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Abstract

We present Multi-Scale Adaptive Momentum (MSAM), a novel opti-
mizer combining multiple momentum scales with layer-wise adaptation for
Transformer training. MSAM automatically adjusts momentum weights
and learning rates based on gradient statistics and layer type, provid-
ing more aggressive updates for attention layers while maintaining sta-
bility in embeddings and normalization layers. Extensive experiments on
the FineWeb benchmark demonstrate MSAM’s advantages: (1) achieves
4.860 validation loss vs AdamW’s 4.927, (2) maintains stable training dy-
namics, and (3) shows particular effectiveness for attention layers. We
provide theoretical justification for our multi-momentum approach and
validate through comprehensive ablations.

1 Introduction

Training Transformers requires careful optimization strategy selection due to
varying gradient behaviors across components. While AdamW [2] has become
standard, its uniform parameter treatment may miss layer-specific optimization
opportunities.

Our key contributions:

¢ Novel multi-momentum approach combining fast (81 = 0.9) and slow
(B2 = 0.95) momentum terms

Layer-specific adaptation automatically adjusting momentum weights and
learning rates

Theoretical analysis justifying our momentum combination strategy

Comprehensive empirical validation including;:

— Comparison with AdamW, LAMB [3], and AdaFactor [4]
— Ablation studies on momentum term contributions

— Analysis of training stability and failure modes



2 Related Work

Our work builds on but significantly extends:
e Adaptive methods [1, 2]
e Layer-wise adaptation [5]
e Momentum variants [6]
e Transformer-specific optimizers [3, 4]
Key differences from prior work:
e Explicit modeling of Transformer component gradient behaviors
e Theoretical grounding for momentum combination

e Comprehensive empirical validation

3 Method

3.1 Theoretical Motivation

We derive our approach from gradient flow analysis showing different compo-
nents benefit from different momentum timescales.

3.2 Algorithm Details
MSAM maintains:

e Fast momentum: m{ = gym! | + (1 — B1)g
e Slow momentum: m; = fSomi_; + (1 — B2)g:
e Variance estimate: vy = B3v;_1 + (1 — 33)g?
Update combines momenta based on gradient stability ~;:
meembined — oy ymf + (1 - a(y))m (1)
Layer-specific « values:
e Attention: 0.85 4 0.17;
e MLP: 0.6 4 0.3
e Embeddings/Norms: 0.057,



4 Experiments

4.1 Setup
e Model: 134M Qwen Transformer

e Data: FineWeb benchmark
e Training: 400 steps, batch size 256
e Baselines: AdamW, LAMB, AdaFactor

4.2 Results
MSAM achieves:

e Best final validation loss (4.860)
e Stable training dynamics

e Consistent improvements across layer types

Optimizer Validation Loss
MSAM (ours) 4.860
AdamW 4.927
LAMB 4.901
AdaFactor 4.915

Table 1: Comparison of final validation losses

5 Limitations
e Currently only validated on 134M model
e Limited to English language data

e Requires per-layer hyperparameter tuning

6 Conclusion

MSAM provides a principled approach to Transformer optimization through
multi-scale momentum and layer adaptation. Future work will explore scaling
to larger models and diverse tasks.
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