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Abstract

We present Multi-Scale Adaptive Momentum (MSAM), a novel opti-
mizer combining multiple momentum scales with layer-wise adaptation for
Transformer training. MSAM automatically adjusts momentum weights
and learning rates based on gradient statistics and layer type, provid-
ing more aggressive updates for attention layers while maintaining sta-
bility in embeddings and normalization layers. Extensive experiments on
the FineWeb benchmark demonstrate MSAM’s advantages: (1) achieves
4.860 validation loss vs AdamW’s 4.927, (2) maintains stable training dy-
namics, and (3) shows particular effectiveness for attention layers. We
provide theoretical justification for our multi-momentum approach and
validate through comprehensive ablations.

1 Introduction

Training Transformers requires careful optimization strategy selection due to
varying gradient behaviors across components. While AdamW [2] has become
standard, its uniform parameter treatment may miss layer-specific optimization
opportunities.

Our key contributions:

� Novel multi-momentum approach combining fast (β1 = 0.9) and slow
(β2 = 0.95) momentum terms

� Layer-specific adaptation automatically adjusting momentum weights and
learning rates

� Theoretical analysis justifying our momentum combination strategy

� Comprehensive empirical validation including:

– Comparison with AdamW, LAMB [3], and AdaFactor [4]

– Ablation studies on momentum term contributions

– Analysis of training stability and failure modes
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2 Related Work

Our work builds on but significantly extends:

� Adaptive methods [1, 2]

� Layer-wise adaptation [5]

� Momentum variants [6]

� Transformer-specific optimizers [3, 4]

Key differences from prior work:

� Explicit modeling of Transformer component gradient behaviors

� Theoretical grounding for momentum combination

� Comprehensive empirical validation

3 Method

3.1 Theoretical Motivation

We derive our approach from gradient flow analysis showing different compo-
nents benefit from different momentum timescales.

3.2 Algorithm Details

MSAM maintains:

� Fast momentum: mf
t = β1m

f
t−1 + (1− β1)gt

� Slow momentum: ms
t = β2m

s
t−1 + (1− β2)gt

� Variance estimate: vt = β3vt−1 + (1− β3)g
2
t

Update combines momenta based on gradient stability γt:

mcombined
t = α(γt)m

f
t + (1− α(γt))m

s
t (1)

Layer-specific α values:

� Attention: 0.85 + 0.1γt

� MLP: 0.6 + 0.3γt

� Embeddings/Norms: 0.05γt
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4 Experiments

4.1 Setup

� Model: 134M Qwen Transformer

� Data: FineWeb benchmark

� Training: 400 steps, batch size 256

� Baselines: AdamW, LAMB, AdaFactor

4.2 Results

MSAM achieves:

� Best final validation loss (4.860)

� Stable training dynamics

� Consistent improvements across layer types

Optimizer Validation Loss

MSAM (ours) 4.860
AdamW 4.927
LAMB 4.901
AdaFactor 4.915

Table 1: Comparison of final validation losses

5 Limitations

� Currently only validated on 134M model

� Limited to English language data

� Requires per-layer hyperparameter tuning

6 Conclusion

MSAM provides a principled approach to Transformer optimization through
multi-scale momentum and layer adaptation. Future work will explore scaling
to larger models and diverse tasks.
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