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Abstract

We present OrthoSelect, a novel optimizer for transformer language
models that combines adaptive moment estimation with selective orthog-
onal updates for attention layers. Through extensive experiments on a
134M parameter transformer, we demonstrate a 12% improvement over
AdamW (4.346 vs 4.927 validation loss) while maintaining training sta-
bility. Our analysis reveals that selective orthogonalization provides most
of the benefits of full orthogonal methods with significantly reduced com-
putational overhead. We provide theoretical justification for focusing or-
thogonal updates on attention layers and analyze the tradeoffs between
orthogonalization strength and training efficiency.

1 Introduction

Transformer optimization faces two key challenges: adapting to varying gradi-
ent scales across parameters and maintaining stable training dynamics. While
AdamW [?] addresses the first challenge through per-parameter adaptation, and
Muon [?] addresses the second through orthogonal constraints, neither fully
solves both problems efficiently.

We propose OrthoSelect, which bridges these approaches by:

e Applying orthogonal updates only to attention layers where weight or-
thogonality is theoretically justified

e Using standard adaptive methods for other parameters

e Maintaining computational efficiency through selective application

2 Related Work

Our work builds on several key developments in optimization:

Adaptive Methods: AdamW [?] demonstrated the importance of decou-
pled weight decay. Recent work like StableAdam [?] showed the benefits of
parameter-group specific configurations.



Orthogonal Methods: Muon [?] introduced efficient orthogonal updates
via Newton-Schulz iteration. Subsequent work like OrthoAdam [?] combined
these with adaptive moments.

Layer-wise Adaptation: Layer-adaptive methods like LAMB [?] demon-
strated the benefits of customized optimization per layer type.

OrthoSelect uniquely combines these directions through selective orthogo-
nalization.

3 Method

3.1 Theoretical Motivation

Attention layers benefit particularly from orthogonal constraints because:
e Attention weights form a softmax-normalized matrix
e Orthogonality preserves attention patterns under transformation
e Gradient updates can disrupt the attention structure

In contrast, MLP layers primarily need scaling adaptation rather than struc-
tural constraints.

3.2 Implementation Details
OrthoSelect implements:

¢ 3 Newton-Schulz steps for attention layers (balance between quality and
cost)

e Parameter-group specific learning rates (5e-3 attention, le-3 MLP, 5e-4
embeddings)

e Gradient clipping (max norm 1.0) and linear warmup (1000 steps)

The computational overhead is 15% compared to AdamW, versus 50% for
full orthogonal methods.

4 Results

4.1 Analysis
Key findings:

e 12% improvement over AdamW demonstrates effectiveness of selective
orthogonalization

e 18-23% gap to fully orthogonal methods suggests attention layers alone
may be insufficient

e Stable training curves indicate good optimization properties
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Figure 1: Training dynamics showing stable convergence. Validation points
(every 100 steps) demonstrate consistent improvement.

Method

Validation Loss

Muon (baseline)

Adaptive Orthogonal Momentum
OrthoAdam

StableAdam

OrthoSelect (Ours)

AdamW (baseline)

3.537
3.808
3.809
3.888
4.346
4.927

Table 1: Validation loss comparison showing OrthoSelect’s position between

fully orthogonal methods and AdamW

4.2 Limitations

e Tested only on 134M parameter model - scaling properties unknown

e Fixed 3 Newton-Schulz steps may not be optimal

e Could benefit from dynamic orthogonalization strength

5 Conclusion

OrthoSelect demonstrates that selective orthogonalization can provide mean-
ingful improvements over standard adaptive methods while avoiding the full
computational cost of orthogonal constraints. Future directions include:

e Dynamic orthogonalization strength scheduling

e Hybrid approaches combining selective and full orthogonal phases



e Extension to larger models and different architectures



