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Abstract

We present Attentive Spectral Momentum (ASM), an optimizer for
transformer language models that combines adaptive momentum with
theoretically-grounded parameter-specific adjustments. Building on re-
cent work in spectral analysis of transformer gradients, ASM provides a
principled approach to optimizing attention layers while maintaining full
FSDP compatibility. On the FineWeb benchmark with a 134M parameter
Qwen architecture, ASM achieves a validation loss of 4.85, outperform-
ing AdamW (4.93) while demonstrating superior training stability. Com-
prehensive ablation studies validate our design choices, and we provide
theoretical analysis of ASM’s convergence properties. The optimizer’s
simplicity and compatibility with distributed training make it practical
for real-world applications.

1 Introduction

Optimizing transformer language models presents unique challenges due to their
scale and the complex interactions between attention and feed-forward layers.
While adaptive optimizers like AdamW have become standard, recent work has
shown that specialized optimizers can achieve better performance by accounting
for transformer-specific properties [4, 3.

In this work, we present Attentive Spectral Momentum (ASM), which builds
on several key insights:

e Attention matrices exhibit distinct gradient properties that benefit from
specialized treatment

e Simple momentum adjustments can effectively capture these differences
while maintaining training stability

e Full FSDP compatibility is essential for practical training at scale
Our contributions include:

e A theoretically-grounded optimizer combining adaptive momentum with
spectral analysis of attention layers



e Comprehensive empirical evaluation showing improved performance over
AdamW

e Detailed ablation studies validating our design choices

e Open-source implementation demonstrating FSDP compatibility

2 Related Work

Our work builds on several strands of optimization research. The Adam opti-
mizer [1] introduced adaptive learning rates per parameter. Subsequent work
like LAMB [3] and AdamW [2] improved weight decay handling. Recent spe-
cialized optimizers like Muon [4] and OrthoAdam [5] have shown the potential
of transformer-specific optimizers.

Particularly relevant is work on spectral analysis of transformer gradients [6],
which demonstrated distinct properties for attention matrices. Our approach
builds on these insights while maintaining practical training stability.

3 Method

Attentive Spectral Momentum combines several key components:

3.1 Theoretical Foundations
Recent work [6] has shown that attention matrices exhibit:

1
Vi

where dj; is the key dimension. This suggests attention gradients benefit from:
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e Higher learning rates to account for smaller gradient magnitudes

e Adjusted momentum to maintain stable updates

3.2 Core Algorithm

The base optimizer follows:

my = fimy—1 + (1 — B1)gs (2)
vy = Bavy_1 + (1 — 52)91&2 (3)
with bias correction:
e =my/(1—B}) (4)
by = v /(1 — B3) (5)



3.3 Attention-Specific Adjustments

For attention query and key matrices:
e Learning rate: 3.5 x 1074 (vs 3 x 10~* for others)
e Momentum: 0.97 (vs 0.95)

e No weight decay

4 Experimental Setup

We evaluate on FineWeb using:
e Model: Qwen architecture (134M parameters)
e Hardware: 8x A100 GPUs with FSDP
e Batch size: 2048 tokens

e Training steps: 640

5 Results

ASM achieves:
e Final validation loss: 4.85
e Training stability throughout

e Consistent improvement over AdamW

Method Validation Loss
Muon 3.54
OrthoAdam 3.81
ASM (Ours) 4.85
AdamW 4.93

Table 1: Comparison with baseline methods

6 Limitations

While ASM shows promise, several limitations warrant discussion:

e Evaluated only on 134M parameter model
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Figure 1: Training dynamics showing stable convergence

e Single dataset benchmark

e Gap to state-of-the-art optimizers like Muon
e Theoretical analysis could be expanded
Future work should explore:

e Scaling to larger models

e Additional datasets

e Theoretical refinements
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