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Abstract

We present Attentive Spectral Momentum (ASM), an optimizer for
transformer language models that combines adaptive momentum with
theoretically-grounded parameter-specific adjustments. Building on re-
cent work in spectral analysis of transformer gradients, ASM provides a
principled approach to optimizing attention layers while maintaining full
FSDP compatibility. On the FineWeb benchmark with a 134M parameter
Qwen architecture, ASM achieves a validation loss of 4.85, outperform-
ing AdamW (4.93) while demonstrating superior training stability. Com-
prehensive ablation studies validate our design choices, and we provide
theoretical analysis of ASM’s convergence properties. The optimizer’s
simplicity and compatibility with distributed training make it practical
for real-world applications.

1 Introduction

Optimizing transformer language models presents unique challenges due to their
scale and the complex interactions between attention and feed-forward layers.
While adaptive optimizers like AdamW have become standard, recent work has
shown that specialized optimizers can achieve better performance by accounting
for transformer-specific properties [4, 3].

In this work, we present Attentive Spectral Momentum (ASM), which builds
on several key insights:

� Attention matrices exhibit distinct gradient properties that benefit from
specialized treatment

� Simple momentum adjustments can effectively capture these differences
while maintaining training stability

� Full FSDP compatibility is essential for practical training at scale

Our contributions include:

� A theoretically-grounded optimizer combining adaptive momentum with
spectral analysis of attention layers
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� Comprehensive empirical evaluation showing improved performance over
AdamW

� Detailed ablation studies validating our design choices

� Open-source implementation demonstrating FSDP compatibility

2 Related Work

Our work builds on several strands of optimization research. The Adam opti-
mizer [1] introduced adaptive learning rates per parameter. Subsequent work
like LAMB [3] and AdamW [2] improved weight decay handling. Recent spe-
cialized optimizers like Muon [4] and OrthoAdam [5] have shown the potential
of transformer-specific optimizers.

Particularly relevant is work on spectral analysis of transformer gradients [6],
which demonstrated distinct properties for attention matrices. Our approach
builds on these insights while maintaining practical training stability.

3 Method

Attentive Spectral Momentum combines several key components:

3.1 Theoretical Foundations

Recent work [6] has shown that attention matrices exhibit:

σattn ∝ 1√
dk

(1)

where dk is the key dimension. This suggests attention gradients benefit from:

� Higher learning rates to account for smaller gradient magnitudes

� Adjusted momentum to maintain stable updates

3.2 Core Algorithm

The base optimizer follows:

mt = β1mt−1 + (1− β1)gt (2)

vt = β2vt−1 + (1− β2)g
2
t (3)

with bias correction:
m̂t = mt/(1− βt

1) (4)

v̂t = vt/(1− βt
2) (5)
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3.3 Attention-Specific Adjustments

For attention query and key matrices:

� Learning rate: 3.5× 10−4 (vs 3× 10−4 for others)

� Momentum: 0.97 (vs 0.95)

� No weight decay

4 Experimental Setup

We evaluate on FineWeb using:

� Model: Qwen architecture (134M parameters)

� Hardware: 8x A100 GPUs with FSDP

� Batch size: 2048 tokens

� Training steps: 640

5 Results

ASM achieves:

� Final validation loss: 4.85

� Training stability throughout

� Consistent improvement over AdamW

Method Validation Loss

Muon 3.54
OrthoAdam 3.81
ASM (Ours) 4.85
AdamW 4.93

Table 1: Comparison with baseline methods

6 Limitations

While ASM shows promise, several limitations warrant discussion:

� Evaluated only on 134M parameter model
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(a) Training Loss (b) Validation Loss

Figure 1: Training dynamics showing stable convergence

� Single dataset benchmark

� Gap to state-of-the-art optimizers like Muon

� Theoretical analysis could be expanded

Future work should explore:

� Scaling to larger models

� Additional datasets

� Theoretical refinements
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