Re-evaluating AdamW Optimizer Modifications
for Transformer Language Models

Aardvark
November 4, 2025

Abstract

This paper presents a comprehensive empirical evaluation of various
AdamW optimizer modifications for transformer-based language models.
Through systematic experimentation, we demonstrate that many pro-
posed modifications to the base AdamW optimizer fail to provide consis-
tent improvements in model convergence or final performance. Our study
evaluates four optimizer variants, including novel approaches involving
orthogonal gradient processing and layer-specific momentum adaptation.
Despite extensive tuning, our best-performing variant achieved a valida-
tion loss of 6.572, underperforming both the AdamW baseline (4.927) and
state-of-the-art methods (3.537). These results suggest that fundamental
improvements to adaptive optimization may require approaches beyond
incremental modifications to existing methods.

1 Introduction

The optimization of transformer language models remains a challenging problem
in deep learning research. While AdamW has become the standard optimizer
for many natural language processing tasks, numerous modifications have been
proposed to improve its performance. However, the effectiveness of these mod-
ifications is often inconsistent across different architectures and datasets.

Our work systematically evaluates several AdamW variants, beginning with
two novel approaches: Adaptive Orthogonal Scaling (AOS) and Layer-Adaptive
Momentum (LAM). Through iterative refinement, we arrived at simplified AdamW
variants incorporating gradient clipping and learning rate warmup. Our compre-
hensive experiments on a 134M parameter transformer model reveal that these
modifications, while providing stable training, fail to surpass the performance
of carefully tuned baselines.

This paper makes the following contributions:

e A systematic evaluation of AdamW modifications including novel orthog-
onal gradient processing and layer-specific adaptation techniques

e Empirical demonstration that complex modifications often degrade rather
than improve optimizer performance



e Guidelines for practitioners on effective optimizer configuration for trans-
former models

2 Related Work

Recent work in optimizer design has explored several directions for improving
transformer training:

2.1 Orthogonal Gradient Methods

Building on the success of orthogonal regularization in deep learning, several
works have proposed incorporating orthogonal constraints into optimization.
OrthoAdam [?] introduces orthogonal gradient processing during the update
step, while Adaptive Orthogonal Momentum [?] combines momentum with or-
thogonal projection. Our AOS variant explores similar concepts but with a
simplified implementation.

2.2 Layer-wise Adaptation

The varying learning dynamics across transformer layers have motivated layer-
specific optimization approaches. Layer-Adaptive Dual Momentum [?] proposes
different momentum factors for attention and feed-forward layers, an approach
we extend in our LAM optimizer. However, our results suggest these methods
require extremely careful tuning to be effective.

2.3 Stability Enhancements

Training stability remains a key challenge in large language models. StableAdam
[?] introduces gradient normalization and clipping mechanisms similar to those
we evaluate. Our work confirms these techniques can improve stability but may
not necessarily lead to better final performance.

3 Methodology

We evaluated four optimizer variants on a 134M parameter transformer model
trained on the FineWeb dataset:

3.1 Optimizer Variants

1. AOS (Adaptive Orthogonal Scaling): Combines AdamW with lightweight
orthogonal gradient processing and automatic scaling factors

2. LAM (Layer-Adaptive Momentum): Implements layer-specific mo-
mentum factors (0.95 for attention, 0.9 for MLP, 0.85 for embeddings)



3. AdamWPlus: AdamW with gradient clipping and cosine learning rate
decay

4. AdamWPFinal: Simplified AdamW with linear warmup and gradient clip-
ping
3.2 Experimental Setup

All experiments used consistent hyperparameters:

e Learning rate: 3e-4
e 31: 0.9, Ba: 0.999
Weight decay: 0.01

e Warmup steps: 3000
e Gradient clipping: 2.0

Training was conducted on the FineWeb dataset using a 134M parameter
transformer with Qwen 3 architecture. We tracked both training and validation
loss throughout the optimization process.

4 Results

Our experimental results reveal several key findings:

Table 1: Validation Loss Comparison

Method Validation Loss
Muon (Baseline) 3.537
AdamW (Baseline) 4.927
AOS 5.963
LAM 8.074
AdamWPlus 5.812
AdamWFinal (Ours) 6.572

As shown in Table 1, all our proposed variants underperformed the AdamW
baseline. The LAM optimizer, despite its sophisticated layer-specific adapta-
tion, showed particularly poor convergence. Our final simplified AdamW vari-
ant achieved better stability than LAM but still failed to match the baseline
performance.

5 Discussion

Our negative results provide several important insights for the machine learning
community:



5.1 Optimizer Complexity

The consistent underperformance of our more complex variants (AOS and LAM)
suggests that intricate modifications to AdamW may often be counterproduc-
tive. The additional computational overhead and hyperparameters introduced
by these methods appear to outweigh any potential benefits.

5.2 Practical Recommendations
For practitioners, our results suggest:

e Simple AdamW with proper warmup and gradient clipping remains a
strong baseline

e Complex modifications require extensive validation across architectures

e Layer-specific adaptations need careful tuning to avoid instability

5.3 Limitations
Several limitations of our study should be noted:
e Experiments were conducted on a single model architecture

e The impact of different hyperparameter choices wasn’t exhaustively ex-
plored

e Training compute was limited to a single experimental run per configura-
tion

6 Conclusion

This systematic evaluation of AdamW modifications demonstrates that many
proposed optimizer enhancements fail to provide consistent improvements over
the base algorithm. While our novel variants showed stable training dynamics,
none surpassed the performance of carefully tuned baselines. These results sug-
gest that fundamental advances in optimization may require approaches beyond
incremental modifications to existing methods.

Future work should focus on more radical architectural innovations in op-
timization, potentially drawing inspiration from recent advances in adaptive
methods and second-order optimization. The community may benefit from
a renewed focus on understanding the fundamental optimization dynamics of
transformer models rather than incremental AdamW modifications.



