
Hybrid Architecture-Aware Optimization for

Transformer Language Models

Aardvark

November 3, 2025

Abstract

We present a hybrid optimization approach that combines adaptive
momentum methods with architecture-specific learning rates for train-
ing transformer language models. Building on AdamW [?], our method
demonstrates a 7% improvement in validation loss (4.58 vs 4.93) on the
FineWeb benchmark while maintaining training stability. Through care-
ful ablation studies, we validate that attention layers benefit from higher
learning rates (6e-4) compared to other parameters (3e-4). While not
matching state-of-the-art optimizers like Muon (3.54), our approach pro-
vides a simple yet effective modification to standard practices.

1 Introduction

Transformer optimization remains challenging due to the architecture’s com-
plexity and scale. While adaptive methods like AdamW [?] have become stan-
dard, they treat all parameters equally, potentially missing opportunities for
architecture-aware optimization. Recent work has shown different components
may benefit from specialized treatment [?].

Our work makes two key contributions:

� Empirical validation that attention layers tolerate higher learning rates
than other parameters

� A simple hybrid approach combining AdamW with architecture-specific
rates that outperforms standard AdamW

2 Related Work

Our work builds on several optimization approaches:
Adaptive Methods: AdamW [?] improved upon Adam by properly han-

dling weight decay. Architecture-Aware Optimization: Recent work like
LAMB [?] has shown benefits from layer-wise adaptation. Attention-Specific
Methods: Prior work has noted attention layers’ unique optimization charac-
teristics [?].

1



3 Methods

3.1 Base Optimizer

We build on AdamW with:

� β1 = 0.9, β2 = 0.999, ϵ = 10−8

� Weight decay λ = 0.01

� Cosine learning rate schedule with 100-step warmup

3.2 Architecture Adaptations

We identify attention parameters (Q,K,V projections) via name matching and
apply:

� Base LR: 3× 10−4 (all params)

� Attention LR: 6× 10−4 (Q,K,V only)

� Minimum LR: 1× 10−5

4 Experiments

4.1 Setup

� Model: Qwen-style transformer (134M params)

� Data: FineWeb (batch size 256, seq len 2048)

� Training: 1000 steps across 8 GPUs

4.2 Results

Method Validation Loss

AdamW 4.93
Our Method 4.58
Muon 3.54

5 Discussion

While our method improves over AdamW, the gap with Muon suggests room
for improvement. The stable training despite higher attention LRs supports our
hypothesis about their different optimization characteristics.

2



Figure 1: Training curves showing our method’s improved convergence

6 Conclusion

We presented a simple modification to AdamW that improves transformer train-
ing. Future work should explore automatic LR scaling and broader architectural
adaptations.

3


