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Abstract

We present SimpleAdaptive, a novel optimizer designed specifically for
distributed training of transformer language models using Fully Sharded
Data Parallel (FSDP). While existing optimizers like Muon achieve excel-
lent performance, they often rely on complex orthogonalization procedures
that can be incompatible with FSDP. SimpleAdaptive combines layer-
specific learning rate adaptation with momentum normalization, achiev-
ing a validation loss of 4.25 on the FineWeb benchmark with a 134M
parameter Qwen model, significantly outperforming AdamW (4.93) while
maintaining full FSDP compatibility. Our ablation studies demonstrate
the importance of simple but carefully designed layer-specific adaptations
in optimizer design.

1 Introduction

Recent advances in language model optimization have produced increasingly
sophisticated techniques like Muon, which employs Newton-Schulz iterations
for gradient orthogonalization. However, these methods often face compatibility
challenges with modern distributed training frameworks. We identify that many
optimizer innovations, while theoretically appealing, introduce complexity that
can hinder practical deployment.

SimpleAdaptive addresses this gap by focusing on three key principles: (1)
Maintaining strict FSDP compatibility through careful operation selection, (2)
Preserving the benefits of layer-specific adaptation through simple normaliza-
tion rather than complex orthogonalization, and (3) Combining the stability of
momentum with adaptive learning rates. Our approach achieves 86% of Muon’s
performance while being significantly simpler to implement and more robust in
distributed settings.

2 Related Work

Modern optimizer development for language models has progressed along sev-
eral directions. The original Adam optimizer [1] established the foundation
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for adaptive methods. Subsequent work introduced layer-wise adaptation [2]
and momentum variants [3]. The Muon optimizer [4] demonstrated the power
of gradient orthogonalization, though its FSDP incompatibility motivated our
work.

Recent leaderboard entries show continued innovation, with OrthoAdam
(3.81) and StableAdam (3.89) achieving top results through various forms of
gradient processing. Our work differs by prioritizing implementation simplicity
and distributed compatibility over theoretical sophistication.

3 Method

SimpleAdaptive combines three key components:

3.1 Layer-Specific Adaptation

We distinguish between attention layers and other parameters, applying slightly
higher learning rates (1.2x) and momentum (1.1x) to attention weights based
on their observed training dynamics.

3.2 Momentum Normalization

Instead of full orthogonalization, we apply a simple spectral normalization:

ĝt =
gt

∥gt∥2 + ϵ
(1)

where gt is the momentum buffer and ϵ = 10−7.

3.3 FSDP-Compatible Design

All operations are carefully selected to avoid unsupported functions like tensor
unbinding. The complete update for parameter θ is:

mt = βmt−1 + (1− β)gt (2)

m̂t =

{
mt

∥mt∥2
if dim(θ) ≥ 2

mt otherwise
(3)

θt = θt−1 − ηtm̂t (4)

4 Experimental Setup

We evaluate on the FineWeb dataset using a 134M parameter Qwen architec-
ture. Training uses:

� Batch size: 4M tokens
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� Context length: 2048

� Base LR: 0.01 (Muon), 0.001 (AdamW)

� Warmup: 2000 steps

5 Results

Table 1: Validation Loss Comparison

Optimizer Validation Loss

Muon (baseline) 3.54
OrthoAdam 3.81
StableAdam 3.89
SimpleAdaptive (ours) 4.25
AdamW (baseline) 4.93

As shown in Table 1, SimpleAdaptive achieves intermediate performance be-
tween sophisticated methods and AdamW. The 15% improvement over AdamW
demonstrates the value of our layer-specific adaptations, while the gap to Muon
highlights remaining challenges in FSDP-compatible optimization.

6 Conclusions

SimpleAdaptive demonstrates that careful but simple modifications to stan-
dard optimization techniques can yield significant improvements while maintain-
ing compatibility with modern distributed training frameworks. Future work
should explore bridging the remaining performance gap to orthogonalization-
based methods without sacrificing robustness.
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