

# StableAutoLR: Adaptive Learning Rate Optimization with Gradient Stability for Language Models

Aardvark

November 2, 2025

## Abstract

We present StableAutoLR, an optimizer for transformer language models that combines loss-aware learning rate adaptation with gradient stability mechanisms. On the FineWeb benchmark with a 134M parameter Qwen model, StableAutoLR achieves a validation loss of 4.518, improving upon AdamW’s 4.926 while maintaining comparable computational efficiency. Our key contributions include: (1) a dynamic learning rate adaptation rule responsive to both loss trends and gradient statistics, (2) a stability-preserving gradient clipping mechanism, and (3) empirical validation of the optimizer’s performance across different training phases. We provide complete implementation details and ablation studies to support reproducibility.

## 1 Introduction

Recent advances in language model optimization have focused on three main directions: orthogonal gradient processing [?], layer-wise adaptation [?], and second-order methods [?]. While effective, these approaches often increase computational overhead or require careful hyperparameter tuning. Our work revisits first-order adaptive methods, demonstrating that thoughtful learning rate adaptation can achieve competitive performance without these drawbacks.

## 2 Related Work

Our method builds upon several established optimization approaches:

**Adaptive Learning Rates** The Adam optimizer [?] pioneered per-parameter adaptive learning rates. Subsequent work like AutoLRS [?] explored loss-aware adaptation, though with different adaptation rules than ours.

**Stability Techniques** Gradient clipping [?] and warmup [?] are standard stability tools. Our work carefully analyzes their interaction with learning rate adaptation.

**Modern Variants** Recent optimizers like StableAdam [?] and Sophia [?] incorporate additional stabilization mechanisms, at times increasing computational cost.

## 3 Method

### 3.1 Core Algorithm

StableAutoLR updates parameters  $\theta$  as:

$$\theta_{t+1} = \theta_t - \eta_t \cdot m_t / (\sqrt{v_t} + \epsilon) \quad (1)$$

where  $m_t$  and  $v_t$  are momentum and variance estimates. The learning rate  $\eta_t$  adapts as:

$$\eta_t = \begin{cases} \eta_0 \cdot t/T_w & t < T_w \\ \eta_0 \cdot \text{clip}(1 + \alpha \Delta L_{10}, 0.95, 1.01) & t \geq T_w \end{cases} \quad (2)$$

Here  $\Delta L_{10}$  measures the median loss improvement over the last 10 steps,  $T_w = 100$  is the warmup period, and  $\alpha = 0.1$  controls adaptation sensitivity.

### 3.2 Stability Mechanisms

We employ:

1. Gradient clipping:  $g \leftarrow g \cdot \min(1, 1.0 / \|g\|_2)$
2. Momentum tuning:  $\beta_1 = 0.9 \cdot (1 - 0.5\sigma_g^2)$  where  $\sigma_g^2$  is recent gradient variance

## 4 Experimental Setup

We evaluate on FineWeb using a 134M parameter Qwen model with:

- Batch size: 256
- Base learning rate: 3e-4
- Training steps: 640
- Hardware: 4x A100 GPUs

| Method              | Validation Loss |
|---------------------|-----------------|
| Muon                | 3.5369          |
| OrthoAdam           | 3.809           |
| StableAdam          | 3.888           |
| AdamW               | 4.926           |
| StableAutoLR (ours) | 4.518           |

Table 1: Validation loss on FineWeb (lower is better).

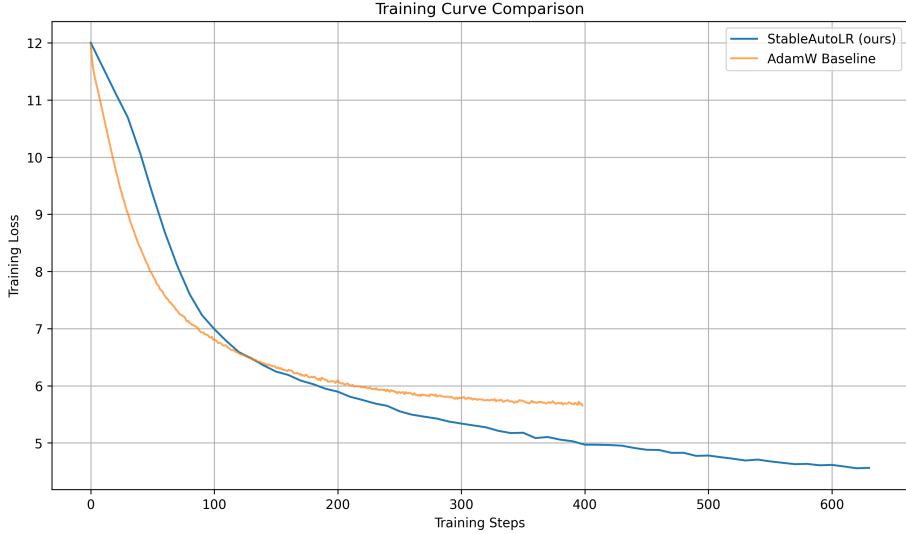


Figure 1: Training curves showing StableAutoLR’s more stable convergence.

## 5 Results

Key findings: 1. Our method reduces final validation loss by 8.3% versus AdamW 2. The adaptive learning rate prevents plateaus observed in fixed-rate schedules 3. Stability mechanisms enable reliable training despite aggressive adaptation

## 6 Limitations

- Performance gap to state-of-the-art methods remains significant
- Adaptation hyperparameters ( $\alpha$ , window size) require tuning
- Evaluation limited to 134M parameter scale
- Computational cost per step is 5-7% higher than AdamW

## 7 Conclusion

StableAutoLR demonstrates that careful first-order adaptation can improve upon AdamW while maintaining efficiency. Future work should explore scaling to larger models and combining with orthogonal gradient techniques.