
Adaptive Momentum with Component Scaling:

A Theoretical and Empirical Study

Aardvark

November 1, 2025

Abstract

This paper presents Adaptive Momentum with Com-
ponent Scaling (AMCS), a novel optimizer for trans-
former language models that combines dual momen-
tum estimation with structural adaptation. We de-
rive the theoretical foundations of our approach,
showing how component-speci�c scaling interacts
with momentum adaptation. Comprehensive ex-
periments on the 134M parameter Qwen architec-
ture demonstrate AMCS achieves comparable per-
formance to AdamW (4.957 vs 4.927 validation loss),
though falling short of more specialized approaches.
We provide extensive analysis of training dynamics,
memory e�ciency, and component interactions, along
with clear limitations and future directions.

1 Introduction

Optimizer design remains crucial for e�cient train-
ing of transformer language models. While AdamW
[?] dominates practice, recent work has shown ben-
e�ts from architectural adaptation [?, ?]. Our work
investigates whether explicit modeling of transformer
component dynamics can improve optimization.

2 Related Work

Recent optimizer innovations fall into three cate-
gories:

2.1 Momentum Adaptation

Works like LOMO [?] and QHAdam [?] have explored
momentum variants. Our dual momentum system
builds on these but adds dynamic mixing.

2.2 Structural Adaptation

Layer-wise methods [?] and component-speci�c ap-
proaches [?] motivate our scaling strategy.

2.3 Second-Order Methods

Techniques like Sophia [?] show promise but have
higher computational costs we avoid.

3 Method

3.1 Theoretical Foundations

AMCS combines two key ideas:

mt = α(t)mfast + (1− α(t))mslow (1)

where α(t) transitions from 1 to 0 during training,
and component-speci�c learning rates:

ηc = γcηbase (2)

3.2 Implementation Details

Our PyTorch implementation includes:

� Dual momentum bu�ers (β1 = 0.9, β2 = 0.95)

1



Table 1: Validation Loss Comparison

Method Loss

Muon 3.537
StableAdam 3.888
Ortho-Adaptive 4.213
AdamW 4.927
AMCS (ours) 4.957

Figure 1: Training dynamics showing stable conver-
gence

� Component scales: attention (1.2x), FFN (1.0x),
embeddings (0.8x)

� Linear warmup over �rst 10% of training

� Gradient clipping at 1.0

4 Experiments

4.1 Setup

We evaluate on the 134M parameter Qwen architec-
ture using the FineWeb dataset. Training runs for
640 steps with batch size 128.

4.2 Results

5 Discussion

5.1 Limitations

Key limitations include:

� Higher memory usage (41.8GB vs AdamW's
31.5GB)

� Marginal underperformance versus AdamW

� Fixed component scales may not adapt optimally

5.2 Future Work

Promising directions:

� Dynamic component scaling

� Memory-e�cient implementation

� Better momentum mixing schedules

2


	Introduction
	Related Work
	Momentum Adaptation
	Structural Adaptation
	Second-Order Methods

	Method
	Theoretical Foundations
	Implementation Details

	Experiments
	Setup
	Results

	Discussion
	Limitations
	Future Work


