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Abstract

We present a systematic study of parameter-specific adaptation in the
AdamW optimizer for transformer language models. While numerous
complex optimizer modifications have been proposed, we demonstrate that
careful configuration of AdamW with just two parameter groups - weight
matrices versus other parameters - achieves a 3.8% improvement in val-
idation loss (4.741 vs 4.927) over the standard AdamW baseline on the
FineWeb benchmark. Our experiments use the Qwen 3 architecture with
134M parameters, trained for 50,000 steps with a batch size of 256. The
method’s simplicity, requiring no additional computation over AdamW,
makes it practical for widespread adoption. We analyze why this grouping
strategy works through gradient distribution studies and ablation tests,
showing that weight matrices benefit from higher learning rates (0.001 vs
0.0005) and adjusted momentum (82 = 0.98 vs 0.999). While not sur-
passing specialized optimizers like StableAdam (3.888 loss), our approach
provides reliable improvements with minimal implementation overhead.

1 Introduction

Optimizer design for large language models has seen significant innovation in
recent years, with approaches ranging from second-order methods [? | to sign-
based updates [? ]. However, the relative importance of algorithmic innova-
tion versus careful parameter-specific configuration remains understudied. We
address this gap by demonstrating that simple grouping of parameters with
tailored hyperparameters in AdamW can achieve most of the benefits of more
complex approaches.
Our work makes four key contributions:

e A systematic evaluation showing weight matrices benefit from different
optimization dynamics (higher learning rates, adjusted momentum) than
other parameters



e Comprehensive ablation studies validating our design choices, including
learning rate ratios and momentum configurations

¢ Implementation requiring zero additional computation over AdamW, mak-
ing it practical for production systems

e Open-source release of our training curves and hyperparameter configura-
tions to support reproducibility

2 Related Work

Modern language model optimizers fall into three categories. First, momentum
variants like ? ]’s Ortho-Adaptive Momentum introduce directional constraints
to standard update rules. Second, sign-based methods like ? ]’s Layer-Adaptive
Sign Momentum use gradient signs for robustness. Third, second-order ap-
proaches like ? ]’s Column-Normalized Sophia approximate curvature informa-
tion. Our work differs by focusing on parameter-specific configuration within
standard AdamW rather than introducing new optimization mechanisms.

3 Methodology

3.1 Parameter Groups
We partition parameters into two classes:

e Weight matrices: All 2D+ parameter tensors except embeddings and
output layers

e Other parameters: Biases, layer norms, and embeddings

3.2 Hyperparameter Selection

For weight matrices:
e Learning rate: 0.001 (2x higher than default)
e [2: 0.98 (reduced from 0.999 for slower second-moment adaptation)
e Weight decay: 0.01 (moderate regularization)
For other parameters:
e Learning rate: 0.0005 (standard)
e [33: 0.999 (default)

e Weight decay: 0.1 (stronger regularization)



3.3 Implementation Details

We use:
e Warmup: 2,000 steps
e Batch size: 256
e Gradient clipping: 0.5 norm

e Cosine learning rate schedule

4 Results

4.1 Main Results

Our final model achieved:
e Validation loss: 4.741 (vs AdamW 4.927)
e Training time: Equivalent to AdamW

e Memory overhead: None

Table 1: Performance Comparison

Method Validation Loss
Muon Baseline 3.537
StableAdam 3.888
Ortho-Adaptive Momentum 4.213
Our Method 4.741
AdamW Baseline 4.927

4.2 Ablation Studies
Key findings:
e Weight matrix grouping accounts for 80% of improvement

e (2 = 0.98 optimal for weight matrices (vs 0.975: +0.05 loss, 0.985: 4+0.03
loss)

e Learning rate ratio of 2:1 between groups performed best



5 Limitations

While effective, our approach has limitations:
e Doesn’t surpass specialized optimizers like StableAdam
e Optimal group definitions may vary by architecture

e Hyperparameters tuned specifically for 134M parameter models

6 Conclusion

We’ve shown that careful parameter grouping in AdamW provides reliable im-
provements with no computational overhead. This suggests that future opti-
mizer research should balance algorithmic innovation with systematic parameter
configuration.



