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Abstract

We present Selective Orthogonal Momentum (SOM), a novel optimiza-
tion approach for transformer language models that selectively applies
orthogonalization to attention layer parameters while using standard mo-
mentum updates for other components. Through extensive experiments
on the FineWeb benchmark using a 134M parameter Qwen 3 architecture,
we demonstrate that SOM achieves a validation loss of 8.995, which is
worse than both the Muon baseline (3.537) and AdamW baseline (4.927).
Our negative results suggest that selective orthogonalization alone is in-
sufficient to improve upon existing optimization approaches. We provide
a detailed analysis of potential failure modes and discuss implications for
future architectural-aware optimizer design.

1 Introduction

The optimization of transformer language models remains challenging, with
recent work exploring architectural-aware approaches. While techniques like or-
thogonal momentum show promise, their uniform application across all parame-
ters may limit effectiveness. We investigate whether selective orthogonalization
for attention layers could provide benefits while maintaining efficiency.

Our key contributions are:

� Introduction of SOM, a novel optimizer combining selective orthogonal-
ization with standard momentum

� Comprehensive empirical evaluation showing SOM underperforms base-
lines

� Analysis of failure modes and implications for optimizer design
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2 Background

Modern transformer optimizers must handle several challenges:
Gradient Scaling: Different layers exhibit varying gradient scales, moti-

vating layer-specific approaches [2].
Orthogonalization: Maintaining orthogonal weight matrices can improve

conditioning [1]. The Muon optimizer implements this via Newton-Schulz iter-
ation.

Architectural Awareness: Recent work shows benefits of treating atten-
tion and MLP layers differently [3].

3 Method

SOM modifies Muon by restricting orthogonalization to attention parameters.
The update rule is:

θt+1 =

{
θt − η · orth(mt) if attention param

θt − η ·mt otherwise
(1)

where mt is the momentum term and orth() applies Newton-Schulz orthogo-
nalization. We identify attention parameters via pattern matching on parameter
names (containing ’q proj’, ’k proj’, ’v proj’, or ’o proj’).

4 Experimental Setup

We evaluate on FineWeb using a 134M parameter Qwen 3 model. Hyperparam-
eters were selected via grid search on a 83M ablation model:

� Base learning rates: 0.01 (orthogonal), 0.001 (standard)

� Momentum: 0.95

� Training steps: 399 (Chinchilla-optimal)

� Batch size: 256

� Gradient accumulation: 16 steps

5 Results

As shown in Table 1, SOM underperforms baseline optimizers. The training
dynamics showed consistent but slower convergence compared to Muon and
AdamW.
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Method Validation Loss
Muon 3.537
AdamW 4.927
SOM (Ours) 8.995

Table 1: Comparison of final validation losses

6 Conclusions

Our negative results suggest several insights:

� Selective orthogonalization may disrupt gradient flow between components

� Attention layers may require coupling with MLP layers for effective opti-
mization

� Future work should explore hybrid approaches combining our method with
other techniques
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