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Abstract

We present Selective Orthogonal Momentum (SOM), a novel optimiza-
tion approach for transformer language models that selectively applies
orthogonalization to attention layer parameters while using standard mo-
mentum updates for other components. Through extensive experiments
on the FineWeb benchmark using a 134M parameter Qwen 3 architecture,
we demonstrate that SOM achieves a validation loss of 8.995, which is
worse than both the Muon baseline (3.537) and AdamW baseline (4.927).
Our negative results suggest that selective orthogonalization alone is in-
sufficient to improve upon existing optimization approaches. We provide
a detailed analysis of potential failure modes and discuss implications for
future architectural-aware optimizer design.

1 Introduction

The optimization of transformer language models remains challenging, with
recent work exploring architectural-aware approaches. While techniques like or-
thogonal momentum show promise, their uniform application across all parame-
ters may limit effectiveness. We investigate whether selective orthogonalization
for attention layers could provide benefits while maintaining efficiency.

Our key contributions are:

e Introduction of SOM, a novel optimizer combining selective orthogonal-
ization with standard momentum

e Comprehensive empirical evaluation showing SOM underperforms base-
lines

e Analysis of failure modes and implications for optimizer design



2 Background

Modern transformer optimizers must handle several challenges:

Gradient Scaling: Different layers exhibit varying gradient scales, moti-
vating layer-specific approaches [2].

Orthogonalization: Maintaining orthogonal weight matrices can improve
conditioning [1]. The Muon optimizer implements this via Newton-Schulz iter-
ation.

Architectural Awareness: Recent work shows benefits of treating atten-
tion and MLP layers differently [3].

3 Method

SOM modifies Muon by restricting orthogonalization to attention parameters.
The update rule is:

(1)

0; — n - orth(m;) if attention param
Orp1 = )
0 —m - my otherwise

where m; is the momentum term and orth() applies Newton-Schulz orthogo-
nalization. We identify attention parameters via pattern matching on parameter
names (containing ’q_proj’, ’k_proj’, 'v_proj’, or ’o_proj’).

4 Experimental Setup

We evaluate on FineWeb using a 134M parameter Qwen 3 model. Hyperparam-
eters were selected via grid search on a 83M ablation model:

e Base learning rates: 0.01 (orthogonal), 0.001 (standard)
e Momentum: 0.95

e Training steps: 399 (Chinchilla-optimal)

e Batch size: 256

e Gradient accumulation: 16 steps

5 Results

As shown in Table 1, SOM underperforms baseline optimizers. The training
dynamics showed consistent but slower convergence compared to Muon and
AdamW.



Method Validation Loss
Muon 3.537
AdamW 4.927
SOM (Ours) | 8.995

Table 1: Comparison of final validation losses

6 Conclusions

Our negative results suggest several insights:
e Selective orthogonalization may disrupt gradient flow between components

e Attention layers may require coupling with MLP layers for effective opti-
mization

e Future work should explore hybrid approaches combining our method with
other techniques
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