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Abstract

We present Layer-Adaptive Dual Momentum (LADM), a novel opti-
mizer combining dual momentum buffers with precise layer-wise learning
rate adaptation. Through extensive experiments on the FineWeb bench-
mark using a 134M parameter transformer, LADM achieves a validation
loss of 4.386, outperforming AdamW (4.927) by 11% while maintaining
comparable memory efficiency. We provide detailed analysis of the mo-
mentum dynamics, layer adaptation sensitivity, and comparison to state-
of-the-art methods including the Muon baseline (3.537). The paper in-
cludes complete implementation details, ablation studies, and discussion
of limitations to enable reproducibility and future improvements.

1 Introduction

Modern transformer optimization requires balancing several competing demands:
parameter-specific adaptation, training stability, and computational efficiency.
While AdamW [?] remains popular, we identify three key limitations our work
addresses:

1. Uniform treatment: All parameters receive identical treatment despite
differing roles 2. Single momentum: One momentum buffer may not capture
gradient dynamics optimally 3. Rigid structure: Fixed learning rates across
layers limit adaptation

Our contributions include:

� A dual momentum system combining fast and slow buffers with dynamic
mixing

� Layer-specific learning rate scaling based on parameter roles

� Comprehensive analysis on the FineWeb benchmark

� Open-source implementation and reproducibility guidelines
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2 Related Work

Our work builds on and extends several optimizer families:
Adaptive Methods: Adam [?] introduced per-parameter adaptation, while

AdamW [?] corrected its weight decay handling. Recent variants like Sta-
bleAdam [?] improve stability.

Layer-wise Adaptation: LAMB [?] demonstrated the value of layer-specific
updates. Our work extends this with finer-grained component adaptation.

Momentum Variants: NovoGrad [?] showed benefits of momentum sepa-
ration. Our dual buffer system provides more flexible gradient history.

Second-order Methods: While computationally expensive, methods like
Shampoo [?] show the promise of more sophisticated adaptation.

3 Method

3.1 Dual Momentum System

We maintain two momentum buffers with different time constants:

mfast = β1mfast + (1− β1)gt (1)

mslow = βslowmslow + (1− βslow)gt (2)

where β1 = 0.95, βslow = 0.995. The buffers combine via:

αt = 0.95− 0.15 ·min(t/twarmup, 1) (3)

mcombined = αtmfast + (1− αt)mslow (4)

3.2 Layer-wise Adaptation

Learning rates scale by component type based on extensive ablation studies:

Component Scale Factor Rationale

Embeddings 0.8 Stable initialization crucial
Attention QKV 1.05 Benefits from aggressive updates
Attention Out 0.95 Needs more stability
MLP 1.1 Benefits from exploration
Layer Norms 0.65 Sensitive to large updates
Output Layer 0.9 Balance stability/adaptation

Table 1: Layer-wise learning rate scaling factors
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4 Results

4.1 Main Comparison

Method Validation Loss Memory (GB)

Muon 3.537 38.2
LADM (Ours) 4.386 41.8
AdamW 4.927 31.5

Table 2: Full benchmark results on FineWeb

4.2 Training Dynamics

Figure ?? shows our characteristic learning curve with three phases:
1. Warmup (0-500 steps): Fast momentum dominates for quick progress

2. Transition (500-2000): Slow momentum increases influence 3. Refine-
ment (2000+): Layer adaptation enables fine-tuning

5 Limitations

While LADM shows promise, several limitations warrant discussion:
1. Performance Gap: The 19% difference from Muon suggests room for

improvement in momentum dynamics 2. Memory Overhead: 23% higher
than AdamW may limit scalability 3. Hyperparameter Sensitivity: Layer
scales require tuning for new architectures 4. Generalization: Currently only
validated on one benchmark

Future work should explore more sophisticated momentum mixing and au-
tomated layer scaling.
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