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Abstract

This paper presents a systematic investigation of hybrid momentum
optimization techniques for transformer language models. We examine
the feasibility of combining standard momentum updates with selective
orthogonalization for large parameter matrices, focusing on training sta-
bility and performance tradeoffs. Our experiments on a 134M parameter
transformer model demonstrate that while our HyMo optimizer achieves
comparable performance to AdamW (validation loss of 4.983 vs 4.927), it
does not outperform existing approaches. The study provides insights into
the practical challenges of incorporating orthogonal updates in modern
language model training pipelines and establishes baseline expectations
for similar hybrid approaches.

1 Introduction

Optimizer design remains an active area of research in deep learning, particularly
for large language models where training stability and efficiency are paramount.
While Adam and its variants dominate current practice [?, ?], recent work has
explored alternative approaches including orthogonal optimization methods [?]
and second-order techniques [?].

This work investigates whether selective orthogonalization can be benefi-
cially combined with standard momentum updates in a hybrid approach. Our
primary research questions are:

� Can selective orthogonalization maintain training stability while poten-
tially offering benefits over pure momentum methods?

� What are the practical tradeoffs in computational overhead and perfor-
mance when implementing such hybrid approaches?

� How does selective orthogonalization compare to full orthogonalization
methods like Muon?
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2 Related Work

Our work builds on several established lines of research in optimization for deep
learning. The success of Adam [?] demonstrated the effectiveness of adaptive
momentum methods with per-parameter learning rates. Recent variants like
AdamW [?] introduced improved weight decay handling.

Orthogonal optimization approaches have shown promise in various con-
texts [?, ?]. The Muon optimizer demonstrated that orthogonal momentum
could improve training efficiency, though with scalability challenges. Second-
order methods like Sophia [?] have shown potential but require careful imple-
mentation to remain practical.

Our work differs by focusing on a targeted combination of techniques rather
than proposing a fundamentally new optimization approach. This aligns with
recent work on optimizer composition [?] while maintaining computational effi-
ciency.

3 Method

The HyMo optimizer combines standard momentum updates with selective or-
thogonalization for large parameter matrices. The complete procedure is:

1. Compute gradient gt ← ∇θL(θt−1) 2. Update momentum: mt ←
β1mt−1 + (1− β1)gt 3. Update variance: vt ← β2vt−1 + (1− β2)g

2
t 4. For large

matrices (dim ≥ 1024× 1024): a. Orthogonalize: morth
t ← 0.5(mt −mtm

T
t mt)

b. Update: θt ← θt−1 − ηmorth
t /

√
vt + ϵ 5. For other parameters: a. Update:

θt ← θt−1 − ηmt/
√
vt + ϵ

The 1024 threshold was chosen empirically based on preliminary experiments
showing diminishing returns for orthogonalization on smaller matrices. The
conservative orthogonalization step helps maintain stability while potentially
benefiting from orthogonal updates.

4 Experiments

We evaluated HyMo on a 134M parameter Qwen transformer model trained on
the FineWeb dataset. All experiments used:

� Batch size: 4M tokens

� Learning rate: 3e-4 (with linear warmup over first 100 steps)

� Weight decay: 0.1

� β1, β2: 0.9, 0.98

� Training steps: 640

� Hardware: 8x A100 GPUs with FSDP
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We compared against AdamW and Muon baselines using identical training
configurations. The Muon implementation followed [?] with default hyperpa-
rameters.

5 Results

Figure 1: Training loss curves showing HyMo’s convergence behavior

Figure 1 shows HyMo’s training curve, demonstrating stable convergence.
The final validation losses were:

Method Validation Loss
Muon 3.537
AdamW 4.927
HyMo (Ours) 4.983

Key observations:

� HyMo maintains comparable performance to AdamW

� The orthogonalization overhead (41.78GB memory vs AdamW’s 31.49GB)
may not justify the minimal performance difference

� Muon’s superior performance suggests full orthogonalization may be prefer-
able when computationally feasible
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6 Discussion

Our results suggest that selective orthogonalization, while feasible, does not
provide clear advantages over either pure momentum methods or full orthogo-
nalization approaches. Several factors may contribute:

1. The benefits of orthogonalization may require more aggressive application
than our conservative approach 2. The computational overhead may outweigh
any theoretical benefits 3. Modern architectures may be sufficiently robust to
not require orthogonal updates

These findings align with recent work suggesting that careful initialization
and normalization may reduce the need for specialized optimizers [?].

7 Conclusion

This study investigated hybrid momentum optimization for transformer lan-
guage models. While our HyMo approach demonstrated feasibility, it did not
outperform existing methods. The work provides valuable negative results and
establishes baseline expectations for similar hybrid approaches. Future work
could explore more sophisticated criteria for applying orthogonal updates or
investigate whether the benefits of orthogonalization can be achieved through
other means.
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