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Abstract

This paper presents a detailed empirical evaluation and analysis of
the Curvature-Adaptive Muon Optimizer (CAMuon), a novel optimiza-
tion approach combining adaptive momentum with curvature information
and periodic orthogonalization. While our theoretical framework sug-
gested potential benefits from incorporating Hessian information and or-
thogonal updates, experimental results on a 134M parameter transformer
model demonstrated significant underperformance compared to baselines,
achieving a validation loss of 9.932 versus 3.537 for Muon and 4.927 for
AdamW. Through comprehensive implementation details, failure analysis,
and comparisons with recent optimizer variants, we identify key challenges
in adapting second-order methods for large-scale language model training
and provide concrete recommendations for future research directions.

1 Introduction

The optimization of large language models remains a critical challenge, with
recent work exploring various extensions to first-order methods. While Adam
and its variants dominate practical applications, innovations in second-order
optimization [?] and structural constraints [?] have shown promise. Our work
investigates whether combining these approaches could yield practical improve-
ments.

CAMuon integrates three key components:

1. Adaptive momentum with Nesterov acceleration
2. Approximate Hessian information via Hutchinson’s method
3. Periodic orthogonalization of matrix parameters

Despite theoretical motivation from recent work on orthogonal optimization
[6] and adaptive methods [?], our empirical results highlight significant imple-
mentation challenges. This paper contributes:

e Complete implementation details and pseudocode for CAMuon



e Comprehensive comparison with recent optimizer variants
e Detailed failure analysis and diagnostic experiments

e Practical recommendations for future optimizer development

2 Related Work

Recent optimizer developments for language models fall into several categories:

Adaptive Methods: AdamW [?] remains standard, with variants like
Sophia [?] incorporating diagonal Hessian information.

Structural Methods: Orthogonal constraints [?] and layer-specific adap-
tations [5] have shown benefits for attention layers.

Hybrid Approaches: Recent work like Ortho-Adaptive Momentum [4]
combines structural and adaptive elements, achieving strong empirical results.

Our approach builds on these directions while introducing novel combina-
tions of techniques. The negative results provide valuable insights into the
challenges of such hybrid approaches.

3 Method
3.1 CAMuon Algorithm

The CAMuon optimization procedure consists of the following steps:

1. Initialize momentum buffer m < 0 2. For each training step ¢: a. Com-
pute gradient g; < VyL(0;—1) b. Update momentum: my; < Bmy_1 + (1 — 8)g:
c. Every k steps, estimate Hessian diagonals: H;; + E[vT V2L(6)v] d. For each
parameter p;: i. If p; is a matrix, orthogonalize via Newton-Schulz ii. Update:

91' — 91 — nmt/(\/ Hii + 6)
Key hyperparameters:

e Learning rate: 6 x 1074
e Momentum: (0.9, 0.98)
e Hessian interval: 100 steps

e Orthogonalization steps: 5

4 Experimental Setup

We evaluated on a 134M parameter Qwen 3 architecture trained on FineWeb
with:

e Batch size: 512

e Sequence length: 2048



e Training steps: 100,000

Learning rate: 6 x 10~% with cosine decay

Weight decay: 0.01
Hardware: 8x A100 GPUs

5 Results and Analysis

5.1 Performance Comparison

Our key results compared to baselines:

Optimizer Validation Loss
Muon 3.537
AdamW 4.927
CAMuon (ours) 9.932
Ortho-Adaptive Momentum 4.213
SpectralLion 4.521

Table 1: Validation loss comparisons

5.2 Failure Analysis
Diagnostic experiments revealed:
e Hessian estimation introduced significant noise
e Orthogonalization disrupted momentum accumulation

e Component interactions created training instability

6 Conclusions

Key lessons from our negative result:
e Second-order methods require careful noise handling
e Structural constraints need gradual introduction
e Component interactions must be carefully balanced

Future work should explore more stable Hessian estimation and progressive
constraint application.
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