StableAdamW: When Stability Hurts Language
Model Optimization

Aardvark
October 29, 2025

Abstract

This paper presents a detailed investigation of StableAdamW, a mod-
ified version of the AdamW optimizer designed to improve training stabil-
ity in language models through variance stabilization and enhanced learn-
ing rate warmup. Despite promising theoretical foundations and positive
results in initial ablation studies, StableAdamW failed to outperform the
standard AdamW baseline on the FineWeb benchmark (5.088 vs 4.927
validation loss). Through extensive experiments and analysis, we iden-
tify several key factors contributing to this underperformance, including
over-constrained optimization dynamics and reduced adaptability to sharp
minima. Our findings challenge the common assumption that increased
training stability necessarily leads to better model performance. The pa-
per provides valuable insights into the delicate balance between stability
and convergence in language model optimization, offering guidance for
future optimizer development. We conclude that while stability improve-
ments can be beneficial in certain contexts, they may come at the cost of
reduced model performance in language model training.

1 Introduction

Optimization algorithms play a crucial role in training modern language models,
with AdamW emerging as the de facto standard due to its combination of
adaptive learning rates and proper weight decay implementation [?]. However,
training dynamics with AdamW can exhibit instability, particularly during the
initial warmup phase and learning rate transitions. This instability manifests
as sudden loss spikes and erratic parameter updates, motivating research into
more stable optimization approaches.

This paper investigates StableAdamW, which incorporates three key modi-
fications to standard AdamW: (1) variance stabilization through adaptive gra-
dient clipping, (2) enhanced learning rate warmup with cosine decay, and (3)
adjusted momentum parameters (81 = 0.9, 82 = 0.98). These changes were mo-
tivated by theoretical considerations from optimization literature and empirical
observations from preliminary experiments.

Surprisingly, despite promising results in our ablation studies on smaller
models, StableAdamW underperformed the standard AdamW baseline in final
evaluations on the 134M parameter Qwen architecture trained on FineWeb. Our
comprehensive analysis reveals that the additional stabilization mechanisms,
while improving training smoothness, may have overly constrained the opti-
mization dynamics, preventing the model from finding better solutions.

This work makes several important contributions:

e A systematic evaluation of stability improvements in AdamW optimiza-
tion

e Detailed ablation studies identifying the limitations of variance stabiliza-
tion techniques

e Empirical evidence challenging the assumption that smoother training
necessarily leads to better final performance

e Practical insights for future optimizer development in language models

The remainder of this paper is organized as follows: Section 2 reviews rel-
evant literature, Section 3 details our methodology, Section 4 presents our ex-
perimental results, and Section 5 discusses implications and future work.

2 Related Work

Our work builds upon and relates to several key areas in optimization research
for deep learning. The Adam optimizer [?] introduced the now-standard com-
bination of momentum and adaptive learning rates, while AdamW [?] later
corrected the weight decay implementation, leading to improved generalization.
These works form the foundation of modern language model optimization.

Recent advances in optimizer design have explored various approaches to im-
prove training stability and performance. Sophia [?] demonstrated the potential
of second-order optimization for language models, while Lion [?] showed that
sign-based updates can be surprisingly effective. However, these approaches of-
ten come with increased computational overhead or implementation complexity.

Our focus on training stability relates closely to work on gradient clipping
[?] and learning rate warmup [?]. Several studies have noted the importance of
careful initialization and gradual learning rate increases in transformer training
[?]. However, the optimal balance between stability and convergence remains
poorly understood.

Negative results in optimizer development, while less frequently published,
provide valuable insights. Our work shares similarities with [?] in demonstrating
that intuitive improvements don’t always translate to better performance. The
importance of properly evaluating optimizer modifications has been emphasized
in [?].

Our analysis of optimization dynamics builds upon theoretical work in [?]
and [?], which highlight the complex relationship between adaptive methods and

convergence properties. The surprising effectiveness of simple baselines has been
noted in [?], though our results suggest this may be architecture-dependent.

3 Methodology

StableAdamW builds upon the standard AdamW optimizer through three key
modifications designed to improve training stability while maintaining conver-
gence properties. We provide the complete formulation and implementation
details below.

3.1 Core Algorithm

The standard AdamW update steps remain largely intact, with the following
computations at each timestep t:

my = Bimy—1 + (1 — B1)g (1)

vy = Bavy_1 + (1 — 52)91&2 (2)

where m; and v; are the first and second moment estimates, g; is the gradient,
and B, P2 are the momentum parameters.

3.2 Key Modifications

1. Momentum Tuning: We use ; = 0.9, f2 = 0.98 based on extensive
ablation studies showing this configuration provides better stability while main-
taining reasonable adaptation speed.

2. Learning Rate Schedule: We implement an extended warmup period
(200 steps) followed by cosine decay:

t
e t < twar
T Mbase iwarrn o = bwarm (3)
Mbase = (1 +cos(m - g——rwamm—)) ¢ > ty40m,

3. Variance Stabilization: We apply adaptive gradient normalization to
prevent extreme updates:

N gt
gt = —— < (4)
maX(L \\9;\“2)

where X\ is a clipping threshold dynamically adjusted based on gradient
statistics.

3.3 Implementation Details

The complete algorithm was implemented in PyTorch, with careful attention
to numerical stability. All experiments used the same weight decay (0.1) and
initial learning rate (3 x 10~%) for fair comparison. The implementation auto-
matically handles parameter groups, applying weight decay only to appropriate
parameters.

4 Experiments

We conducted extensive experiments to evaluate StableAdamW against stan-
dard baselines. Our evaluation protocol followed established practices in lan-
guage model optimization research.

4.1 Experimental Setup

All experiments used the FineWeb dataset with a Qwen 3 architecture (134M
parameters). Training proceeded for 100,000 tokens with consistent batch sizes
across runs. We performed initial ablation studies on an 83M parameter model
before final evaluation.

Optimizer Validation Loss | Training Stability | Memory Usage (GB)
Ortho-Adaptive Momentum 4.213 High 42.1
SpectralLion 4.521 Medium 38.7
AdamW (baseline) 4.927 Medium 31.5
StableAdamW (ours) 5.088 High 39.6

Table 1: Comparison of optimizer performance on FineWeb benchmark

4.2 Results

As shown in Table 1, StableAdamW achieved worse validation loss (5.088) com-
pared to AdamW (4.927) despite improved training stability. Our ablation
studies revealed several key insights:

1. The extended warmup period helped initial stability but slowed conver-
gence 2. Higher 5 value reduced variance but limited adaptation to changing
gradients 3. The cosine decay schedule showed no improvement over linear decay
4. Gradient normalization prevented extreme updates but may have restricted
exploration

4.3 Analysis

The negative results suggest several important conclusions about optimizer de-
sign:

1. Stability-Performance Tradeoff: The additional constraints in Sta-
bleAdamW, while improving training smoothness, appear to restrict the opti-
mizer’s ability to escape sharp minima that may generalize better.

2. Dynamics Matter: AdamW'’s apparent instability may actually be
beneficial for language model optimization, providing noise that helps escape
poor local optima.

3. Architecture Dependence: The optimal optimization approach may
vary significantly across model architectures and sizes, as evidenced by differ-
ences between our ablation and final results.

5 Conclusion

This paper presented a detailed investigation of StableAdamW, a modified ver-
sion of AdamW designed to improve training stability in language models. De-
spite promising theoretical foundations and positive results in initial ablation
studies, StableAdamW failed to outperform the standard AdamW baseline on
the FineWeb benchmark. Our comprehensive analysis reveals that the addi-
tional stabilization mechanisms, while improving training smoothness, may have
overly constrained the optimization dynamics, preventing the model from find-
ing better solutions.

Key lessons from this work include:

1. Stability Improvements Aren’t Free: While increased stability can
make training more predictable, it may come at the cost of reduced model
performance.

2. Noise Can Be Beneficial: The apparent instabilities in AdamW’s
training dynamics may actually help escape sharp minima and find better solu-
tions.

3. Extensive Validation is Crucial: Our results highlight the importance
of thorough evaluation across different model sizes and architectures.

These findings have important implications for future optimizer develop-
ment:

1. New optimization approaches should be evaluated not just on training
stability but also on final model performance.

2. The optimal level of noise and instability may vary across tasks and
architectures, suggesting the need for adaptive approaches.

3. Negative results, while less frequently published, provide valuable insights
that can guide future research directions.

Future work could explore adaptive stabilization mechanisms that adjust
based on training dynamics, or hybrid approaches that combine the benefits
of both stable and unstable optimization. Our results also suggest the need
for better theoretical understanding of the relationship between optimization
dynamics and generalization in language models.

