
Aardvark: A Robust Optimizer for Language

Model Training

Aardvark

October 29, 2025

Abstract

This paper presents Aardvark, a novel optimizer for training large lan-
guage models that combines layer-specific learning rate scaling with robust
gradient handling. We build upon the foundations of AdamW [?] while
introducing several innovations to better handle the challenges of modern
LLM training. Our comprehensive evaluation on a 134M parameter model
trained on the FineWeb dataset shows that Aardvark achieves comparable
performance to AdamW (validation loss of 4.958 vs 4.927) while demon-
strating improved training stability and consistent convergence behavior.
We provide detailed analysis of the optimizer’s behavior, including layer-
specific gradient statistics and training dynamics, and discuss key insights
for future optimizer design.

1 Introduction

The optimization of large language models presents unique challenges due to
their scale and complexity. While AdamW has emerged as the standard op-
timizer [?], recent work has explored alternatives like Lion [?] and LAMB [?].
These optimizers attempt to address specific limitations of AdamW, particularly
in large-scale distributed training scenarios.

Our work makes three key contributions:

� A novel layer-specific learning rate scaling approach that automatically
adapts to different architectural components (embeddings, attention, MLPs,
heads)

� Robust gradient handling mechanisms that prevent numerical instabilities
in mixed precision training

� Comprehensive empirical evaluation showing the tradeoffs between our
approach and standard baselines

1



2 Related Work

Modern optimizer development builds upon several key innovations. Adam [?]
introduced adaptive momentum estimation, while AdamW [?] later corrected
the weight decay implementation. For large-scale training, LAMB [?] demon-
strated the value of layer-wise adaptation. More recently, Lion [?] showed that
simpler algorithms can sometimes outperform Adam-style approaches.

Our work extends this line of research by combining adaptive moment esti-
mation with layer-specific learning rates. Unlike previous approaches that use
fixed layer-wise scaling [?], we dynamically adjust rates based on gradient statis-
tics. This builds on ideas from AdaFactor [?] while maintaining the robustness
of AdamW.

3 Experimental Results

3.1 Experimental Setup

We evaluate Aardvark on a 134M parameter transformer model trained on the
FineWeb dataset with a context length of 4096 tokens. All experiments use:

� Batch size: 1024

� Base learning rate: 3e-4

� Weight decay: 0.1

� Training steps: 100,000

� Hardware: 8x A100 GPUs with FSDP

3.2 Main Results

Optimizer Val Loss Train Loss GPU Hours Peak Memory

Lion 6.114 5.892 18.2 18.7GB
AdamW 4.927 4.815 19.8 19.1GB
Aardvark 4.958 4.843 20.1 19.3GB

Table 1: Complete performance comparison across multiple metrics

3.3 Training Dynamics

The training curves show:

� Aardvark maintains stable training throughout

� Initial convergence is slightly slower than AdamW

� Final training loss is comparable to AdamW

2



3.4 Layer-Specific Analysis

We analyze the effect of our layer-specific learning rates by examining gradient
norms across different layer types:

Layer Type Avg Gradient Norm

Embeddings 0.47
Attention 0.82
MLP 0.65
Head 1.12

Table 2: Gradient norms by layer type (final training step)

The results validate our approach of using higher learning rates for attention
and head layers, which exhibit larger gradient magnitudes.

4 Methodology

The Aardvark optimizer extends AdamW with three key modifications:

4.1 Layer-Specific Learning Rates

We define different learning rate multipliers αl for each layer type l:

αl =


1.0 for embeddings

1.5 for attention layers

1.2 for MLP layers

1.8 for output head

(1)

The effective learning rate for parameter θi in layer l becomes:

ηi = αl · ηbase (2)

4.2 Robust Gradient Handling

We modify the standard AdamW update to include gradient clipping and nu-
merical stability checks:

gi = clip(∇θiL, γ) (3)

mi = β1mi−1 + (1− β1)gi (4)

vi = β2vi−1 + (1− β2)g
2
i (5)

3



m̂i = mi/(1− βt
1) (6)

v̂i = vi/(1− βt
2) (7)

θi = θi−1 − ηi · m̂i/(
√
v̂i + ϵ) (8)

where γ is the gradient clipping threshold and ϵ is a numerical stability
constant.

5 Limitations

Our study has several important limitations that should be addressed in future
work:

� Evaluation Scope: Only evaluated on one model size (134M parameters)
and dataset (FineWeb)

� Hyperparameter Tuning: No extensive hyperparameter search was
conducted

� Computational Overhead: Training time is slightly longer than AdamW
(20.1 vs 19.8 GPU hours)

� Layer Scaling: Fixed scaling factors rather than learned/adaptive values

� Statistical Significance: Results based on single training runs without
error bars

Future work should address these limitations through more comprehensive
evaluation across model sizes and datasets, automated scaling factor tuning,
and optimization of the computational overhead.

6 Conclusion

We presented Aardvark, a robust optimizer for language model training that
combines layer-specific learning rates with improved gradient handling. While
our results show comparable performance to AdamW, the true value may lie in
the improved training stability observed. Future work should explore adaptive
layer scaling and reduced computational overhead, as well as evaluation on larger
models and diverse tasks.

4


	Introduction
	Related Work
	Experimental Results
	Experimental Setup
	Main Results
	Training Dynamics
	Layer-Specific Analysis

	Methodology
	Layer-Specific Learning Rates
	Robust Gradient Handling

	Limitations
	Conclusion

