
OrthoSign: A Critical Analysis of Hybrid

Orthogonalization and Sign-Based Optimization

Aardvark

October 29, 2025

Abstract

This paper presents a thorough investigation of OrthoSign, a novel
optimizer combining orthogonal weight updates with sign-based adapta-
tion for language model training. Through extensive empirical analy-
sis on the FineWeb benchmark with a 134M parameter Transformer, we
demonstrate that while the theoretical framework showed promise, the
implementation achieved a final loss of 6.584 - significantly underperform-
ing both the Muon (3.537) and AdamW (4.927) baselines. We provide
detailed ablation studies, training dynamics analysis, and failure mode
diagnostics that reveal critical insights into the challenges of combining
orthogonal transformations with adaptive optimization. Our findings sug-
gest that careful balancing of orthogonalization strength and learning rate
adaptation is crucial for such hybrid approaches.

1 Introduction

Recent advances in optimization for large language models have explored diverse
approaches including adaptive methods [?], sign-based updates [?], and orthog-
onal weight transformations [?]. While hybrid optimizers have shown promise
by combining spectral processing with sign-based updates [?], the interaction
between orthogonal constraints and adaptive optimization remains poorly un-
derstood. Our work systematically investigates this through OrthoSign, which
integrates:

� Momentum-based orthogonalization via fixed-point iteration

� Column-wise adaptive scaling

� Stabilized weight decay

2 Related Work

Our method builds upon and contrasts with several key developments:

1



2.1 Orthogonal Optimization

Muon [?] demonstrated the effectiveness of explicit orthogonal constraints.

2.2 Sign-Based Methods

Lion [?] established the viability of sign-based updates.

2.3 Adaptive Optimization

AdamW [?] remains the gold standard, though recent work has shown promise
with second-order approaches [?].

3 Method

The OrthoSign update rule combines three key components:

3.1 Orthogonalization

Given gradient Gt and momentum Mt, we compute:

Xt = βMt−1 + (1− β)Gt (1)

Xt ← Xt/∥Xt∥F (2)

Then apply k steps of sign-based orthogonalization:

Xt ←
1

2
(Xt + sgn(Xt)) (3)

3.2 Column-wise Scaling

For each column j:

sj =

√
∥X:,j∥2

1
d

∑d
i=1 ∥X:,i∥2

(4)

3.3 Update Rule

The final parameter update becomes:

θt+1 = (1− λ)θt − η(Xt ⊙ S) (5)

where S contains the column scales sj .

2



4 Experiments

We evaluate on FineWeb using a 134M parameter Qwen architecture with:

� Batch size: 512

� Max steps: 100,000

� Learning rates: 10−3, 10−2, 10−1

� Weight decay: 0.01

� Orthogonal steps: 1,3,5

We track:

� Training loss curves

� Gradient norm dynamics

� Orthogonality error ∥WTW − I∥F

5 Results

Method Loss Orth. Error

Muon 3.537 0.12
AdamW 4.927 -
OrthoSign (k=1) 5.892 0.89
OrthoSign (k=3) 6.584 0.45
OrthoSign (k=5) 7.213 0.22

Table 1: Performance and orthogonality metrics

Key findings:

� More aggressive orthogonalization (higher k) improves orthogonality but
harms loss

� Column scaling appears to interfere with optimization

� Learning rate sensitivity is 10x higher than baselines

6 Discussion

The failure modes suggest:

� Strict orthogonality harms parameter updates

� Column norms disrupt careful balance

� Sign updates conflict with momentum

3



7 Conclusion

While OrthoSign underperformed, our analysis provides valuable insights for
future hybrid optimizers:

� Gradual orthogonalization may be preferable

� Separate scaling factors for ortho and adapt components

� Careful learning rate warmup for constrained optimizers

4


