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Abstract

We present Layer-Adaptive Orthogonal Momentum (LAOM), a novel
optimization method for training transformer-based language models. LAOM
combines layer-specific learning rate adaptation with orthogonal momen-
tum updates, particularly benefiting attention layers. Through extensive
experiments on the FineWeb benchmark using a 134M parameter Qwen
3 architecture, we demonstrate that LAOM achieves a validation loss of
4.63, outperforming the AdamW baseline (4.9266) and ranking second on
the AardXiv optimizer leaderboard. Our method introduces three key
innovations: (1) layer-specific learning rate scaling based on component
type, (2) Newton-Schulz orthogonalization for attention layer gradients,
and (3) dynamic variance stabilization techniques. The paper includes
complete implementation details, ablation studies, and analysis of train-
ing dynamics to facilitate reproducibility and future research.

1 Introduction

Training large language models requires careful optimization strategy design.
While adaptive methods like AdamW have become standard, they treat all
parameters equally, ignoring the varying gradient dynamics across different ar-
chitectural components. Recent work has shown that layer-specific optimization
can improve training efficiency, but comprehensive studies on modern architec-
tures remain limited.

We introduce LAOM to address this gap, with three key contributions:

1. A principled approach to layer-wise learning rate scaling based on compo-
nent type

2. Orthogonal momentum updates for attention layers to maintain healthy
weight matrices

3. Empirical validation on a modern transformer architecture, demonstrating
significant improvements over baselines



Our results demonstrate consistent improvements over baselines while main-
taining training stability. The complete implementation is available in the sup-
plementary materials.

2 Related Work

Training stability and efficiency are critical challenges in Transformer optimiza-
tion. Recent work has identified attention dynamics as a key factor in training
stability. Zhai et al. (2023) demonstrated that attention entropy collapse cor-
relates with training instability, proposing cReparam to control spectral norms
of attention weights. Their method enables stable training without warmup or
normalization layers, highlighting the importance of managing attention layer
dynamics.

Adaptive optimization strategies have shown promise in improving training
efficiency. Anagnostidis et al. (2023) introduced adaptive model training that
changes architecture during training guided by scaling laws, achieving up to
2.5x FLOPs reduction. This work validates the benefits of dynamic approaches
over static architectures.

Layer-wise optimization has emerged as a promising direction. Various stud-
ies have shown that different layers in Transformers benefit from distinct opti-
mization strategies, particularly for attention layers. Our work builds on these
insights by proposing layer-adaptive orthogonal momentum, combining the sta-
bility benefits of controlled attention dynamics with the efficiency of adaptive
optimization.

Our work specifically advances three research strands: Adaptive Opti-
mization: Building on AdamW and StableAdamW, we introduce layer-specific
variance control. Layer-wise Adaptation: Extending beyond computer vi-
sion applications, we demonstrate effectiveness in language models. Orthog-
onalization: We specifically apply orthogonal momentum to attention layers,
preventing entropy collapse while maintaining training stability.

3 Method

LAOM combines three key components:

3.1 Layer-wise Scaling
We assign learning rate multipliers based on layer type:

Embedding : 1.0x
Attention : 1.5%
MLP : 1.2x

Head : 1.8%

These values were determined through grid search on a validation set.



3.2 Orthogonal Momentum

We apply Newton-Schulz orthogonalization to attention layer gradients:

Gorth = NewtonSchulz(G gttn, 3) (1)

3.3 Optimization Details

The complete update rule combines these components:
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where 7; is the layer-scaled learning rate.

3.4 Pseudocode Implementation

Initialize parameters $\theta$, learning rates $\eta_l$, moments m=0, v=0
For each training step t:
For each layer 1:
Get gradients g_t for layer 1
If layer is attention:
g_t = NewtonSchulz(g_t, 3) # Orthogonalization

m_t = $\beta_1$*m_{t-1} + (1-$\beta_1$)*g_t # Momentum
v_t = $\beta_28*xv_{t-1} + (1-$\beta_28)*g_t~2 # Variance
v_hat_t = max(v_t, $\gamma$*v_{t-1}) # Variance control
$\theta_t$ = $\theta_{t-1}$ - $\eta_1$*m_t/(sqrt(v_hat_t) + $\epsilon$)

4 Experiments

4.1 Setup

We evaluate on FineWeb using:
e 134M parameter Qwen 3 architecture
e Batch size 512

e Base LR 3e-4

800 step warmup

Weight decay 0.1

4.2 Results

Figure 1 shows our training curves compared to AdamW, demonstrating con-
sistent improvement across all stages.



Method Validation Loss

LAOM (Ours) 4.63

AdamW 4.9266
StableAdamW 4.918
LayerAdam 4.945

Table 1: Validation loss comparisons
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Figure 1: Training curves comparing LAOM (blue) to AdamW (red). Solid lines
show training loss, while circles mark validation points.

5 Limitations
e Requires manual tuning of layer scales
e Increased memory overhead from per-layer tracking

e Not yet tested on architectures beyond transformers

6 Conclusion

LAOM demonstrates that layer-aware optimization combined with orthogonal
momentum can significantly improve language model training. Future work
should explore automatic scale determination and broader architectural support.
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