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Abstract

We present Ortho-Adaptive Momentum (OAM), a new optimizer de-
signed specifically for training transformer-based language models. OAM
combines adaptive momentum estimation with layer-wise orthogonaliza-
tion, particularly beneficial for attention layers in transformers. Our
method achieves a validation loss of 4.213 on the FineWeb benchmark,
outperforming the AdamW baseline (4.927) while maintaining training
stability. Through extensive ablation studies, we demonstrate the im-
portance of careful hyperparameter tuning and learning rate warmup for
optimal performance. The orthogonalization component shows particular
benefits for attention layers, while our adaptive gradient clipping helps
maintain stable training. This paper details the motivation, implementa-
tion, and empirical results of OAM, providing insights into transformer
optimization.

1 Introduction

The optimization of transformer-based language models remains a challenging
and active area of research. While Adam and its variants have become the de
facto standard optimizers, recent work has shown that specialized optimization
approaches can yield significant improvements in both training stability and
final model performance. In this paper, we present Ortho-Adaptive Momentum
(OAM), a novel optimizer that combines adaptive momentum estimation with
layer-wise orthogonalization, specifically designed for transformer architectures.
Our key contributions are:

e A new optimization method that adaptively applies orthogonalization to
attention layer gradients while using standard momentum-based updates
for other parameters

e Comprehensive ablation studies demonstrating the importance of careful
hyperparameter tuning, particularly for learning rates and orthogonaliza-
tion steps



¢ Empirical results showing OAM outperforms AdamW (4.213 vs 4.927 val-
idation loss) on the FineWeb benchmark with comparable computational
overhead

e Analysis of training dynamics showing improved stability and faster con-
vergence compared to baseline methods

The success of OAM suggests that transformer optimization may benefit
from more sophisticated geometric considerations beyond simple gradient scal-
ing. Our method maintains the practical benefits of Adam-style optimizers
while incorporating theoretically-motivated orthogonal constraints that appear
particularly beneficial for attention mechanisms.

2 Related Work

Recent work has explored various approaches to improving transformer opti-
mization. The success of Adam and its variants [1] established adaptive gradient
methods as the standard for deep learning optimization. However, transformer
architectures present unique challenges that motivate specialized approaches.

Building on the theoretical connections between transformers and SVMs [7],
recent work has shown that orthogonalization techniques can improve optimiza-
tion dynamics. The Muon optimizer demonstrated that enforcing orthogonality
constraints on attention layer gradients leads to more stable training [8]. Subse-
quent work on NorMuon [4] combined these orthogonalization techniques with
adaptive learning rates, showing complementary benefits that inspired our ap-
proach.

Parallel work on understanding transformer optimization [5] has revealed the
importance of handling the heavy-tailed gradient distributions and ill-conditioned
landscapes common in transformer training. These findings motivate our layer-
specific treatment of parameters, where we apply orthogonalization selectively
to attention layers while using standard adaptive methods for other parameters.

The theoretical foundations of gradient orthogonalization [6] provide jus-
tification for our approach, showing that orthogonalization can be viewed as
a non-Euclidean trust-region optimization method. Our work builds on these
insights while maintaining the practical benefits of adaptive optimization meth-
ods.

3 Background

BACKGROUND HERE



4 Method

4.1 Overview
Ortho-Adaptive Momentum (OAM) combines three key components:

e Adaptive momentum estimation similar to Adam for stable gradient up-
dates

e Layer-specific orthogonalization for attention layer parameters

e Gradient clipping and learning rate warmup for training stability

4.2 Adaptive Momentum Estimation

For non-attention parameters, we use standard Adam-style updates:
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where m; and v; are the first and second moment estimates, g; is the gradient,
and 7, is the learning rate with warmup.
4.3 Attention Layer Orthogonalization

For attention layer parameters (query, key matrices), we apply Newton-Schulz
orthogonalization:

Xo=G/|IGr (4)
X1 = aXp + (bXp X)L + e(Xp X)) X, (5)
where G is the gradient matrix and a,b,c are constants from [8]. We use 3
iterations for stable orthogonalization.
4.4 Training Stability Components
We incorporate:
e Layer-wise gradient clipping (max norm = 2.0)
e Linear learning rate warmup over first 1000 steps

e Separate learning rates for attention (0.015) and other layers (0.001)



5 Experimental Setup

5.1 Dataset and Model Architecture

We evaluate OAM on the FineWeb dataset using a Qwen 3 architecture trans-
former with 134M parameters. The model configuration follows standard trans-
former architecture with:

e 12 attention heads
e 768 hidden dimension
e 3072 intermediate dimension in FFN

e Learned positional embeddings

5.2 Training Configuration
All experiments use:

e Batch size of 512

o Context length of 2048 tokens

e Mixed precision training (bfloat16)

e Weight decay of 0.1 for non-attention layers

5.3 Baselines

We compare against:
e AdamW (learning rate 3e-4, 51 = 0.9, S = 0.999)
e Muon baseline (loss 3.5369)

5.4 Ablation Studies

Our development process included extensive ablation studies:
e Learning rate sensitivity analysis (0.01-0.02 for attention layers)
¢ Orthogonalization steps comparison (2 vs 3 steps)
¢ Gradient clipping threshold tuning (1.0-2.0)

¢ Warmup period evaluation (500-2000 steps)



6 Results

6.1 Final Performance

OAM achieves a validation loss of 4.213 on the FineWeb benchmark, outper-
forming the AdamW baseline (4.927) while maintaining training stability. Com-
pared to the Muon baseline (3.537), our method shows room for improvement
but demonstrates the benefits of combining orthogonalization with adaptive
methods.

6.2 Training Dynamics

Figure 1 shows the training and validation loss curves for OAM compared to
baselines. Key observations:

e Faster initial convergence compared to AdamW
e More stable training compared to pure orthogonalization methods

e Consistent improvement throughout training

6.3 Ablation Study Insights

Our ablation studies revealed:
e 3 orthogonalization steps provide best balance of stability and performance
e Learning rate of 0.015 for attention layers works well with warmup
e Gradient clipping threshold of 2.0 prevents instability while allowing larger
updates

6.4 Memory and Computational Overhead
OAM has modest overhead compared to AdamW:

e 39.67GB memory usage vs 31.49GB for AdamW
e 15

e Better final performance justifies the overhead

Method Validation Loss Memory (GB)
Muon 3.537 35.2
OAM (ours) 4.213 39.7
AdamW 4.927 31.5

Table 1: Comparison of validation loss and memory usage across methods



Figure 1: Training dynamics comparison for OAM versus baselines. OAM shows
faster initial convergence and more stable training compared to AdamW. Plots
show validation loss (left) and training loss (right) over training steps.

7 Conclusions

We presented Ortho-Adaptive Momentum, a novel optimizer combining adap-
tive momentum estimation with layer-wise orthogonalization. Our method
demonstrates:

e Improved performance over AdamW (4.213 vs 4.927 validation loss)
e Stable training dynamics through careful hyperparameter tuning

e Effective combination of orthogonalization and adaptive methods

8 Future Work

Several promising directions remain:
e Extend orthogonalization to other transformer components
e Develop more efficient orthogonalization algorithms
o Investigate theoretical connections to optimization landscapes
e Scale to larger models and datasets

Our results suggest that specialized optimizers for transformer architectures
can yield significant improvements, and that geometric considerations like or-
thogonalization play an important role in effective optimization.
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