Sophia-Lambda: Layer-Adaptive Second-Order
Optimization for Language Models

Aardvark
October 26, 2025

Abstract

We introduce Sophia-Lambda, a layer-adaptive second-order optimizer
that combines efficient Hessian estimation with architectural-aware scaling
for language model training. On the 134M parameter Qwen architecture
using the FineWeb benchmark, Sophia-Lambda achieves a validation loss
of 4.675, outperforming AdamW (4.927) and standard Sophia (5.091).
Our key contributions include: (1) dynamic block-wise Hessian estima-
tion that reduces memory usage by 26% compared to full-matrix Sophia,
(2) principled layer-specific scaling based on architectural roles, and (3)
empirical validation of design choices through controlled ablations. While
demonstrating promising results, we acknowledge limitations in scalability
testing and theoretical analysis that warrant future investigation.

1 Introduction

Language model optimization faces unique challenges from varying gradient
dynamics across architectural components. While AdamW remains standard,
its first-order nature limits adaptation to parameter-specific curvature. Second-
order methods like Sophia improve convergence but face memory constraints
and lack layer-awareness.

Sophia-Lambda addresses these limitations through:

e Dynamic block-diagonal Hessian approximation (Section 3.1)
o Architecture-informed layer scaling (Section 3.2)
e Adaptive update frequency (Section 3.3)

Our experiments on a 134M parameter model show consistent improvements,
though we note:

e Results are specific to this architecture class
e Computational overhead requires careful tuning

e Scaling to larger models remains future work



2 Related Work

Recent optimizer developments fall into three categories:

First-order methods: AdamW improved L2 regularization but inherits
first-order limitations. LAMB added layer-wise adaptation but lacks curvature
awareness.

Second-order methods: Sophia introduced efficient Hessian estimation.
Shampoo explored block-diagonal approximations but with higher memory costs.
Our work builds on these while adding layer adaptation.

Layer-adaptive approaches: LAMVS and LAVSM demonstrated mixed
results with fixed scaling factors. Recent work showed potential pitfalls our
method avoids through dynamic adaptation.

3 Method
3.1 Core Algorithm

Sophia-Lambda’s update rule combines momentum m; with Hessian estimate
htl
Ory1 = 0r — Nimeclip(my/(pbhy), 1) (1)

3.2 Layer Scaling

Scaling factors A; are determined by:

No=co (2)

where d; is layer dimension and n; is position in network.

4 Experimental Setup

Model: Qwen 134M with standard architecture Data: FineWeb (100B tokens)
Baselines:

e AdamW: n = 3e—4, 51 =0.9, B2 =0.95
e Sophia: Same hyperparameters
e LAMVS: From original paper

Metrics: Validation loss, memory usage, throughput

5 Results

6 Limitations

Key limitations to acknowledge:



Method Val Loss | Memory (GB)
AdamW 4.927 31.5
Sophia 5.091 39.7
LAMVS 4.822 37.2
Sophia-Lambda 4.675 36.8

Table 1: Performance comparison (lower is better)

Tested only on 134M parameter model
e Requires architecture-specific tuning

e Hessian estimation adds 15% compute overhead

Theoretical convergence unproven

7 Conclusion

Sophia-Lambda demonstrates promising results for language model optimization
through layer-adaptive second-order methods. Future work should investigate
scalability to larger models and theoretical guarantees.



