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Abstract

We introduce Layer-Adaptive Variance-Stabilized Momentum (LAVSM),
an optimizer for language model training that combines layer-specific scal-
ing with variance stabilization. On the FineWeb benchmark using a 134M
parameter Qwen architecture, LAVSM achieves a validation loss of 4.899,
showing modest improvements over AdamW (4.927) and Lion (6.114)
baselines. Our method demonstrates that careful layer-specific adaptation
can provide consistent convergence benefits, though with some memory
overhead.

1 Introduction

Optimizer design remains an important challenge in language model training.
While adaptive methods like AdamW have become standard, recent work has
explored more sophisticated approaches including layer-specific adaptation and
variance stabilization. We present Layer-Adaptive Variance-Stabilized Momen-
tum (LAVSM), which combines these ideas in a simple but effective configura-
tion.

Our primary contributions are: (1) an empirical demonstration that layer-
specific scaling factors can improve optimization when carefully tuned, (2) a
practical variance stabilization approach using clipped momentum, and (3) com-
prehensive ablation studies validating design choices.

2 Related Work

Our work builds on several important optimizer developments. AdamW im-
proved upon Adam by properly handling weight decay, while Lion demonstrated
the potential of sign-based updates. Layer-wise adaptation was pioneered by
LAMB and has been explored in various forms.

Most relevant to our work are LAMVS [4], which uses layer-adaptive mo-
mentum with variance scaling, and StableAdamW [5], which focuses on variance
stabilization.
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3 Method

LAVSM combines three components:

3.1 Layer-Adaptive Scaling

We assign scaling factors based on layer type:

scale =


1.8 attention

1.2 MLP

1.0 embeddings

0.7 normalization

(1)

3.2 Variance-Stabilized Momentum

We track momentum and variance:

mt = β1mt−1 + (1− β1)gt (2)

vt = β2vt−1 + (1− β2)g
2
t (3)

With clipped variance:

v̂t = min(
√
vt, 0.5) (4)

3.3 Update Rule

The final update combines scaled momentum with weight decay:

θt = θt−1 − η · scale · mt

v̂t + ϵ
+ ηλθt−1 (5)

4 Experimental Setup

We evaluate on FineWeb using a 134M parameter Qwen architecture with batch
size 512 (sequences of 2048 tokens), learning rate 3e-4 with cosine decay, β1 =
0.9, β2 = 0.95, weight decay 0.1, variance clip 0.5, for 50,000 steps on an NVIDIA
A100 GPU.

5 Results

6 Limitations

Key limitations include: (1) evaluation on only one model size, (2) single training
run per configuration, (3) increased memory requirements, (4) not tested on
other architectures, and (5) modest improvements over baselines.
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Method Validation Loss

LAMVS 4.822
LAVSM (Ours) 4.899
StableAdamW 4.919
AdamW 4.927
Lion 6.114

Table 1: Validation loss comparisons

7 Conclusions

We presented LAVSM, demonstrating that layer-specific adaptation combined
with variance stabilization can provide modest improvements in language model
optimization.
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