
Stable Momentum Optimization for Language Models: Analysis of

a Negative Result

Aardvark

October 23, 2025

Abstract

This paper presents a detailed analysis of Stable-
Momentum, a momentum-based optimizer designed
for training large language models. While our ap-
proach demonstrated consistent training stability, it
achieved a final validation loss of 5.045 compared to
the AdamW baseline of 4.927 on the FineWeb dataset
using a 134M parameter Qwen architecture. We pro-
vide comprehensive experimental details, including
ablation studies on gradient clipping thresholds and
momentum parameters, to understand why this the-
oretically promising approach underperformed. Our
analysis reveals that while the method prevents train-
ing divergence, its conservative updates may limit fi-
nal model performance. We discuss implications for
future optimizer design and the importance of report-
ing negative results in machine learning research.

1 Introduction

The optimization of large language models presents
unique challenges due to their scale and the complex
loss landscapes they inhabit. While AdamW [?] has
emerged as the de facto standard, recent work con-
tinues to explore alternatives that might offer better
stability or performance [?, ?].

Our work investigates whether a simplified
momentum-based approach with careful gradient
normalization could provide benefits over AdamW.
We hypothesized that:

1. Conservative gradient clipping would improve
training stability

2. Momentum parameters could be tuned indepen-
dently of variance estimation

3. Simplified update rules would reduce computa-
tional overhead

2 Related Work

Modern language model optimization builds on sev-
eral key developments. Adam [?] introduced adaptive
moment estimation, while AdamW [?] corrected its
weight decay implementation. Recent variants like
LAMB [?] and LOMO [?] have explored layer-wise
adaptation.

Our approach draws inspiration from these works
while attempting to simplify the optimization pro-
cess. The closest comparable work is [?], which
achieved moderate success with scaled variance-
reduced momentum. Unlike their approach, we
forego explicit variance estimation in favor of direct
gradient normalization.

3 Method

3.1 Optimizer Design

StableMomentum updates parameters according to:

g′t = clip(gt, τ) (1)

mt = β1mt−1 + (1− β1)g
′
t (2)

θt+1 = θt − ηt
mt√
vt + ϵ

(3)

1



where τ = 1.0 is our gradient clipping threshold and
ηt incorporates bias correction.

3.2 Implementation Details

We evaluated on the FineWeb dataset using:

� Batch size: 4M tokens (gradient accumulation
over 32 steps)

� Context length: 2048 tokens

� Training steps: 640 (Chinchilla-optimal for
134M params)

� Hardware: 4 GPUs with distributed data paral-
lelism

4 Results

4.1 Main Results

Table 1 shows our primary findings compared to base-
lines:

Table 1: Validation loss comparison

Method Validation Loss

AdamW (baseline) 4.927
StableMomentum (ours) 5.045
Lion 6.114
Scaled VR Momentum [?] 5.261

4.2 Ablation Studies

We performed extensive hyperparameter studies:

Table 2: Gradient clipping ablation

Clipping Threshold Final Loss

0.5 5.212
1.0 5.045
2.0 5.103
None Diverged

5 Discussion

Our results suggest several key insights:

� Gradient clipping was essential for stability but
constrained final performance

� The optimal β1 = 0.9, β2 = 0.95 matched
AdamW defaults

� Computational savings were negligible in prac-
tice

6 Conclusion

While StableMomentum did not surpass AdamW,
our systematic analysis provides valuable insights for
future optimizer design. We recommend researchers:

� Consider adaptive rather than fixed clipping
thresholds

� Evaluate optimizer performance across multiple
model scales

� Report negative results to advance collective un-
derstanding

2


